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NOMENCLATURE
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A control volume cross-sectional area

CV fluid constant volume specific heat
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M Mach number - U
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R ideal gas constant
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1. INTRODUCTION

1.1 GENERAL BACKGROUND. The successful operation of a ram accelerator

projectile can be described as the proper matching of projectile speed and geometry to the

available gas mixture, or vice-versa. The temperature rise across shock waves or boundary

layers created by the geometry will eventually ignite the surrounding mixture. The amount of

energy release and the location of the release around the body are what the projectile analyst

must be concerned with. The combination of too high an energy release too far forward on the

body will result in a pressure gradient that cannot be attained by attached oblique shocks and

will cause the formation and upstream propagation of a normal shock/detonation wave. Too

low an energy release too far aft on the body will result in little or no thrust.

The a priori prediction of the performance of a ram accelerator projectile can quickly

turn into a formidable challenge if one cannot make use of simplifying assumptions.

Unfortunately, the University of Washington (UW) derived geometry/gas mixture combination,

currently the focus of attention at the major ram acceleration research centers, is one that

defies simplifying assumptions. The geometry of the projectile features an axisymmetric right

circular nose-cone, an axisymmetric truncated right circular cone aft-body, and four (or five)

equally spaced fins which have swept back leading edges. The fins, in particular, give the flow

field a strong three-dimensional character and the shocks emanating from the fin leading

edges play a strong role in igniting the gas mixture. Given these circumstances, performance

calculations which ignore fin effects and assume an axisymmetric flow field are, at best,

approximate. The gas mixtures that have been used to date also contribute to the analytical

complexity of the problem. The methane, oxygen, and nitrogen mixtures that have been used

can be described as heavily diluted (with nitrogen) and very fuel rich which results in a

reaction that, in comparison to an undiluted stoichiometric mixture, is relatively slow and

mild. If equilibrium chemistry is used as a simplifying assumption, validation by comparison

with finite rate kinetics chemistry should be made.

The ram accelerator analyst has to make judgements concerning the complexity of the

fluid dynamics and the complexity of the chemistry for a given calculation. The ability to pare

down the complexity of a calculation allows, given fixed computer resources, more calculations

of a less detailed nature to be performed. If these less detailed calculations are "sufficiently"

accurate, the ability to generate many calculations makes it possible to undertake proper
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projectile/gas mixture design studies. The assessment that the approximate calculations are

good enough has to be made through comparison with a more detailed and computationally

intensive method such as computational fluid dynamics (CFD). In this case, CFD would serve

as the first reality check for a given design and could be used to determine the validity of any

simplifying assumptions that were used.

The ability to perform CFD calculations for high-speed, chemically reacting flow fields

found in ram accelerators has been demonstrated by the Army Research Laboratory (ARL)

(Nusca 1993), Amtec Engineering (Soetrisno, Imlay, and Roberts 1992), the Air Force

Armament Directorate (Sinha et al. 1992), the Naval Research Laboratory (NRL) (Li et al.

1993a; Li et al. 1993b), and probably others (considering the similarities between ram

accelerators and ramjet/scramjet propulsion). One-dimensional (1-D) control volume based

methods have been demonstrated by UW (Knowlen and Bruckner 1991; Bruckner, Hertzberg,

and Knowlen 1990; Bruckner et al. 1991), the Air Force Armament Directorate (Rolader and

Drabczuk 1993), ISL and others (Brouillette et al. 1993). CFD solutions are dependant on

projectile geometry but control volume solutions are independent of projectile geometry.

Geometry-dependent approximate calculations have been made (Rom and Avital 1992), but not

by any of the major ram accelerator research centers. The scramjet community has employed

geometry-dependent approximate techniques for years so it appears that the ram community

should have an interest in developing these kinds of tools for design purposes.

In light of all the aforementioned caveats, attention will now be focused on the

derivation of governing equations for the 1-D control volume, equilibrium chemistry ram

accelerator. Following that will be a discussion about how the fluid dynamic equations were

incorporated into the NASA Lewis CET89 code. The NASA Lewis CET89 code was used as the

equilibrium chemistry engine and thermodynamic database, thus resulting in an analytical

model that combines the very simplest fluid dynamics with sophisticated chemistry.

Documentation of the CET89 code is contained within NASA SP-273 (Gordon and McBride

1976) which is referred to frequently in this report. A detailed listing of the thermodynamic

database used in NASA SP-273 is contained within NASA TM-4513 (McBride, Gordon, and

Reno 1993)
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1.2 GOVERNING EQUATIONS. Figure 1 shows the control volume around a

HIRAM (Hybrid Inbore RAM) projectile that is travelling inside a gun tube.

entrance ptane

exit ptaine--

gun tube projectite

Figure 1: 1-D control volume used for ram projectile analysis.

The 1-D governing equations are:

p IU 1 = p 2U 2  continuity (1)

PI+PU2 +F 2
P1 +P2 + pU2 momentum (2)

12 12
H 1 + U 1 =H 2 + U 2  energy (3)

The assigned enthalpy at a given temperature, H, is defined as the enthalpy of formation at a

reference temperature (in this case, the reference temperature is 298.15 K) plus the change in

sensible enthalpy between the given temperature and the reference state.

0 ( '
H=ATAf + (h-h) (4)

The set of governing equations for the 1-D ram accelerator are identical to those that
F

govern 1-D detonation waves except for the presence of the thrust parameter, A. Analysis of

the 1-D ram accelerator is patterned after the analysis of detonation waves, which has been

covered by various authors (Williams 1985 and Kuo 1986, to name just two). The analogy to

1-D detonation waves has to be emphasized strongly because the geometry of the projectile

does not get factored into the final solution. This, along with the assumptions of 1-D flow in

and 1-D flow out simplifies the whole ram process (oblique shocks, reflections, etc...) to a
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planar phenomenon. The net result of all the simplifying assumptions is shown schematically

in Figure 2.

reaction zone products

\-projectiLe ptanar wave-

Figure 2: Schematic representation of the 1-D flow, equilibrium

chemistry analogy to the ram acceleration process.

The ram projectile can be thought of as a 1-D detonation wave travelling through the gun

tube. If the velocity of the projectile differs from the Chapman-Jouget detonation velocity,

then the thrust, F, will be something other than zero.

Dividing through Equation (2) by P 1 , rearranging, and using the continuity relation

gives the following:

2

P 2 _ - +U1 =- - P p 2  U 2 p ( 5 )

The assumption is made that the gas is ideal in behavior. This allows one to take advantage

of the ideal equation of state and the sound speed relation in an ideal gas.

P = RT = ( 1 ) a (6)

Equation (6) is substituted into Equation (5), and U2 is replaced with M 2 , the Mach number.a2

M2_p ;_ +1 (7)
P 1  2p2 I

The Mach number in the exit plane is assumed to be equal to 1. This is the same assumption

used in the analysis of detonation waves and, in the ram accelerator case, is referred to as the
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"thermally choked mode." It seems arbitrary, but in the case of detonation waves, it is

justified when it is shown that M 2 = 1 corresponds to a minimization of entropy and that

experimentally observed detonations are well predicted when this assumption is made. M 2 = 1

defines the Chapman-Jouget condition in detonation waves, so the ram accelerator case

F
amounts to calculating the Chapman Jouget points for F * 0.

Substitution of Equation (4) into Equation (3) shows that the energy that drives the

process comes from the release of chemical energy and this energy is equivalent to the change

in enthalpy of formation from reactants to products.

Aq=(AHf )1(-&H') (8)

Classical textbook analyses often make the assumption of a calorically perfect gas. This

allows CP and y to be treated as constant with temperature and, along with the ideal equation

of state, let one combine the continuity, momentum, and energy equations so the

P 2  P2 Fthermodynamic end state, P, can be calculated as an explicit function of-T with XF and

Aq ((-- ) handled as parameters that one can just plug in values for. The solution described

in this discussion does not make the assumption of a calorically perfect gas, but the use of the

dimensionless variable, Aq((c• ) I is retained to be used as a principal indicator of the

strength of the chemical reaction. The consequence of not assuming a calorically perfect gas is

that an iterative solution scheme is required to arrive at the final end state of the reaction.

This is discussed in the following section.

1.3 MODIFICATIONS TO CET89 SOLUTION TECHNIQUE. The NASA-Lewis

CET89 code calculates the velocity and thermodynamic properties of Chapman-Jouget

detonations. The near identical nature of the ram accelerator governing equations suggested

the modification of the existing code and the solution algorithms to permit the inclusion of the

F
thrust coefficient, A . Following the assumptions made in NASA SP-273, the two equations

to solve are
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1j=2 (10)

F2-• (1-72M2 I))1

H2 = Hl+ gM2Y2R2T2 (10)

Fwhich reduce to Equations (170) and (171) in NASA SP-273 when --P = 0 and M2 = 1. The

next important step in SP-273 is the set up of the iteration scheme used to arrive at the final

state of the detonation process which is given by Equation (174) and Equation (175). These

two equations are used to solve for two unknowns, Aln pj) and Aln ITT , which are the

P 2  T2
corrections to guessed values of-P2 and -. The corrections are used to update the current

P, Tii

values and iterations are carried out until the corrections are smaller than 0.5x10 -4 or until

eight iterations are made (which is considered to be the "no convergence" threshold). The
P 2  T

coefficients and non-homogeneous terms are calculated using the current values of -2 andT

Since Equation (10) above is identical to Equation (171) in SP-273 (M 2=1 is assumed from now

on), no modifications are necessary to the coefficients in the iteration scheme. The coefficients
F

for Equation (174) in SP-273 have to be modified to reflect the presence of- in Equation (9)

above.

"" P1P
_ iP 2 = P 1 + P2 lnT(V),

In P2d P 2  7 F ' Ll(iT1)
Tn- 1+

P 1 ) P2

_ý 2- = Y (12)
`ý(ýI-T2 1 a, n •L JP,2 (2

(lnTJ 1+TF
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-- P = 
(13)

P2  P2 P

F
These reduce to, respectively, Equations (176), (177), and (178) in SP-273 when = 0 The

Al .T

variable P" represents the right-hand side of Equation (9) and is used to determine if

Pp"
convergence has been achieved. Convergence occurs when -p = 0.

P2

Two more concerns need to be addressed before the modified iteration scheme can be

used to calculate the thrust curve of a ram projectile. The first concern is that one can't just

arbitrarily pick values of and calculate a final state. F is bounded with no solutions

existing above a maximum value, [4] . The second concern is that there are actually two

solutions (two possible final states) for each value of F below the maximum value. When

FF P• = 0, this other end point is called the Chapman-Jouget (or strong) deflagration point.

When viewing the end points of the Chapman-Jouget detonation and deflagration of a typical
P 2 anV te n

mixture in a plane defined by the dimensionless thermodynamic variables, - and L2, the end
P1

point of the detonation solution has 1 and 0.5, whereas the deflagration solution has
P51  U1

= 0.5 and -- , 1 where , U (1,1) represent the initial unreacted state. In most
P 1  v1

textbooks, the only other observation made about the strong deflagration solution is that it is
F

never observed in reality so it is treated as a reject root. For the case where F 0, rejection
AP1

F
of all the deflagration solutions cannot be justified that easily. With larger values ofA , the

two roots move closer to one another until, at the point on the thrust curve where
F [ F_•] 1 the two roots degenerate to just one solution. in P,_• coodiatshi

AP - max Ti V)

happens along the line V2=1 which defines all the detonation branch solutions as those where
Vl
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2 <1 and the deflagration branch solutions as those with V2 >1. The solutions form a line in

e 1  U 1

the~f 2 plane that connect the Chapman-Jouget detonation and deflagration points. The

solution will be unrealistic at the Chapman-Jouget deflagration point and some undetermined

portion of the solution near the Chapman-Jouget deflagration point will be unrealistic as well.

It is presently unclear how to precisely define this region so the entire solution is shown in the

program output.

1.4 INCORPORATION OF DIMENSIONLESS ENERGY RELEASE

CALCULATION ROUTINE TO CET89. CET89 reads in thermodynamic data from its

library in the form of polynomial coefficients. These polynomial coefficients (b, through b ,)

0 •7-298

are used to define Cp, H, and S. The enthalpy of formation, AHf , is not directly defined in

terms of polynomial coefficients, but can be calculated using expressions for H and C.

Equations (90) and (91) of SP-273 give the polynomial expressions for CP and H.

Cp=R, [bl+b2T+b3T +b 4T +b 5T] (14)

F6Ub,+2 T2 +b3 T 3 4 + T b,1 (51 2 3 4 5 +

The change in sensible enthalpy is expressible as an integration of CY.

(h-ho)= To1 C dT (16)

0
Equation (4) can be rearranged to allow the calculation of AHff.

AHf = H - CToCPdT (17)

Substituting the polynomial expressions into Equation (17) leads to the expression used to
0

calculate AHf for each species in the reaction.

AJ~f H(TO) = (18)To+b2T T T0-

The contribution of all the reactant and product species are summed to give the

non-dimensional heat release parameter.

I1 2 (A.) 1 (19)
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1.5 DISTANCE vs. TIME CALCULATION. The purpose of calculating all the points

in the P-v plane where solutions of the governing equations exist is to generate a thrust curve

F
that shows the relationship between the dimensionless thrust coefficient, A P, and velocity.

This calculated relationship can then be used to predict the distance vs. time history of a

projectile inside a ram accelerator.

The acceleration of a ram projectile, at any given time, can be expressed by the

following:
2

d x - FP1 (A (20)

dt m AP f

F
The acceleration of the projectile is controlled by - , which is a result of the mixture

composition and is weakly influenced by fill pressure, P 1, and the ratio of control volume

A
cross-sectional area to projectile mass, -. The instantaneous acceleration is then used tom

predict velocity and position at the start of the next time increment.

2
x= d- + d-x (At) (21)

dt

2dx • 2
x' = x + -x (At) + dx (At) (22)

dt -7 At
dt

The calculations are stopped when the distance exceeds the length of the barrel. The

projectile is assumed to have zero acceleration upon entry into the ram accelerator. If the

velocity of the projectile exceeds the Chapman-Jouget detonation velocity, the thrust is

assumed to be equal to zero. The range of velocities calculated for the thrust curves spans

from the Chapman-Jouget deflagration velocity to the Chapman-Jouget detonation velocity.

Any velocity outside of these two limits would result in a negative thrust. The conclusion one

can draw from this is that 1-D control volume based theories do not predict the attainability of

projectile velocities above the Chapman-Jouget detonation velocity. This is contrary to what

has been demonstrated experimentally by UW, where projectiles have been accelerated to

velocities exceeding 150% of the Chapman-Jouget detonation velocity (Chew et al. 1991). This

disparity emphasizes the need, on the part of the analyst, to excercise caution when using a

theory that radically simplifies the physics of a given problem. It appears reasonable to
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conclude that velocities in excess of the Chapman-Jouget detonation velocity can be achieved,

but not by something that approximates the 1-D, thermally choked mode of operation outlined

in this report. Also shown experimentally by UW is a deviation from 1-D, thermally choked

theory in the transdetonative regime which begins at approximately 90% of the

Chapman-Jouget velocity (Knowlen et al. 1991). A means for predicting the onset of the

transdetonative regime (and defining the limits of applicability of the 1-D thermally choked

model) is not yet available.
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2. DISCUSSION

2.1 PROGRAM MODIFICATIONS. The CET89 code was modified by the addition of

subroutines DEFLEG, MAXF, TCURVE, and QCALC. Entry OUTlA was added to the

subroutine OUT1. The method of controlling the execution of the program, using an input file

with controlling logical variables and needed parameters, was unchanged.

2.2 PROGRAM EXECUTION. The computer equipment needed to run the modified

CET89 code is as follows:

1) IBM PC compatible computer

2) 80386 CPU or better

3) 80387 coprocessor or equivalent

4) MS-DOS operating system. NOTE: The code will not run inside the

MS-DOS window within the Windows operating system.

In addition to the above requirements, the user might have to deactivate extended or

expanded memory managers if their presence is incompatible with the protected mode memory

routines that are bound with the program.

The executable file, nasa.exe and the two library files, thermo.bin and trans.bin, need

to be located in a directory called c:\ramcet. The program needs to load library data before a

calculation is made, and the libraries are assumed to exist in directory c:\ramcet.

A calculation is run by entering the command c:> nasa FILENAME.in where

FILENAME.in is the input file that contains reactant data, initial conditions, and calculation

instructions. An example input file is listed in Appendix 1. The .in suffix is required for input

files.

The output files that are generated by input file FILENAME.in are FILENAME.out,

FILENAME.plt, and FILENAME.xvt. FILENAME.plt appears if the thrust curve option is

selected. FILENAME.xvt appears if the distance vs. time option is chosen. When the thrust

curve option is chosen, FILENAME.out is created but its contents consist mostly of text

headers and program diagnostics.

11



2.3 EXECUTING NEW CALCULATIONS. Calculation options in CET89 are selected

by setting logical variables equal to true (ex: DETN=T) in the INPT2 NAMELIST variable

input list. This controls the flow path through the program. The new calculation options are

selected in the same manner and additional controlling logical variables are included to

accommodate them. The logical variables and their functions are:

DEFLG=T Chapman-Jouget deflagration point calculation

FMAX=T Maximum thrust point calculation

TCURV=T Calculate thrust vs velocity

XVST=T Calculate projectile distance vs time trace

Thrust vs. velocity data is needed prior to calculating projectile distance vs. time so, if

XVST=T is selected, TCURV=T must also be selected. In essence, DEFLEG=T, FMAX=T, and

TCURV=T are stand alone options, while XVST=T is an option within an option.

2.4 HEAT RELEASE PARAMETER CALCULATION, The new subroutine QCALC

is used to calculate the dimensionless heat release parameter. It is called by the other new

subroutines. A modification was made to the existing Chapman-Jouget detonation calculation

subroutine, DETON, to include the calling of subroutine QCALC. The energy release
F

throughout the speed range of the RAM process when - # 0 is fully accounted for.
API

The CET89 code suppresses the print-out of a product when its mole fraction is

6<5X10- . More product information can be viewed if the trace option is selected. In the

interest of speed, the calculation performed within QCALC is based only on the products

having mole fractions >5x10-6 .

2.5 DEFLAGRATION AND MAXIMUM THRUST CALCULATION, The new

subroutines, DEFLEG and MAXF, are patterned after and are very similar to the existing

subroutine DETON. The output provided by the subroutines DEFLEG and MAXF are

identical in nature to that provided by the existing subroutine DETON in that detailed

information is provided for pre-reaction, post-reaction, and overall performance parameters.

The changes made to DETON to create DEFLEG were very minor in nature. DETON

assumes an initial guess for final temperature of 3,800 K and pressure ratio of 15. The

subroutine then iterates until converging on the final solution. DEFLEG is a calculation for

12



the deflagration branch root to the same equation solved in DETON. The initial guesses for

temperature and pressure ratio are changed to 2,500 K and 0.45, respectively, to allow the

iteration routine to converge on the Chapman-Jouget deflagration point. To date (after an

admittedly brief experience with the new routine), this approach and the initial estimates of

temperature and pressure have been found to be adequate.

More substantial changes were made to go from subroutine DETON to subroutine

MAXF. In the P-v plane, the location of the maximum thrust point will occur along the line

V2 = 1. Examination of Equation (10) will show that, at the maximum thrust point, H 2 =H 1.

The iteration technique used in DETON, where two equations are used to come up with

corrections for temperature and pressure, is unnecessary. The iteration scheme in subroutine

MAXF makes use of the ability of the CET89 code to specify thermodynamic state in terms of

the variables H and P (HP=T option). The enthalpy of the reactants is calculated and remains

a fixed input in the iteration scheme. After this is done, the pressure ratio is varied until the

required condition of-V =1 is satisfied.

e 1

The required input for both of these calculation options is the same as that required

for the detonation calculation. After the controlling logical variable is set true and included as

part of the INPT2 name list, a set of initial temperatures and pressures (26 each max) is

supplied. The output for a given input file, FILENAME.in, appears in an output file called

FILENAME.out.

2.6 THRUST CURVE CALCULATION. The thrust curve routine finds all the

locations in the P-v plane that lie between the Chapman-Jouget detonation and deflagration

points and prints simplified output in a form suitable for input into a plotting program so that

the thrust curve can be shown graphically.

The subroutine first calculates the location of the maximum thrust point using the

same technique that is in subroutine MAXF. The reason for this is that no solutions exist for

A-- > . Once this is accomplished, the value of [ is used to determine the
max [1 max

values of F that will be input as parameters into the root-finding equations. A total of 43
AIP,

points are used to make up a thrust curve. These are divided up into 21 points on the
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detonation branch, 21 points on the deflagration branch, and the maximum thrust point which

divides them. F is increased from zero to a value of 0.98 x F to fill in all the points
LP ] m ax

in the detonation branch with data being written to the output file at the end of each stepwise

increment. The data for the maximum thrust point, having already been calculated, is then

written out. The deflagration branch is now filled in with the value of - being decreased
A P,

back down to zero.

The second point calculated corresponds to the Chapman-Jouget detonation point.

The method used to calculate this point is identical to that used in subroutine DETON. The

next point calculated is the first one that uses the modified root-finding equations with a

Fnon-zero value ofA-,. The initial estimates of pressure and temperature for this point are

those of the previously calculated point. It is believed that this method will provide for
well-conditioned calculations. Each value of-F has two roots, and, for values near

AP 1  ['max

these two roots can be relatively close to one another. To prevent the iteration routine from

possibly jumping to the opposite branch, traps are set to catch the program if it jumps to the

other side of V2 =1 and restart it at a point close to the maximum thrust point but on the
V1

correct side ofv2 -=1.
V 1

The twenty-third point calculated is the first point calculated that lies on the

deflagration branch. The initial estimates used for this point are based on the temperature

ratio and pressure ratio of the maximum thrust point with small (0.1) decrements to place it

on the deflagration branch side of the P-v plane. To date, this technique, along with the traps

to guard against jumping to the opposite branch, have worked well.

The input required for a thrust curve calculation is the same as is required for the

detonation calculation, a listing of the mixture initial temperatures and pressures (up to 26

each). The output for an input file FILENAME.in appears in an output file FILENAME.plt.

The output is in the form of columns of velocity, Mach number, thrust coefficient, heat release

parameter, temperature ratio, pressure ration, and specific volume ratio. This makes it
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possible to plot thrust vs. velocity to obtain the thrust curve or cross plot pressure vs. specific

volume to generate the locus of solution points in the P-v plane.

2.7 DISTANCE v,. TIME CALCULATION. The calculation of distance vs. time is an

option that is executed within the subroutine TCURVE. After the final point of a thrust curve

is calculated, distance vs. time calculations are made if the XVST=T option has been specified.

Up to 27 distance vs. time calculations can be made for every thrust curve. This is comprised

of three possible entrance velocities, three barrel lengths, and three accelerator cross-sectional

A
area to projectile mass, A , ratios.

The calculation is begun by interpolating through the thrust curve data and finding

the thrust coefficient for the entrance velocity. This is used to calculate projectile distance

and velocity at the end of the time interval At. The value of the time interval is set by the

following equation.

L barrel/U entrance
At = N(23)N

The default value of N is 50, but a different value can be specified in the input file.

The position and velocity at the end of the time period become the initial values for the next

time interval. This is repeated until the distance travelled exceeds the length of the barrel. If

an initial velocity outside of the range of the thrust curve is specified, the calculation is not

performed and the user is notified about the problem. If, in the course of the calculation, the

projectile should get accelerated to a velocity faster than the Chapman-Jouget detonation

speed, the thrust coefficient is set equal to zero and no further acceleration occurs.

The distance vs. time calculation is selected by setting XVST=T and by specifying the

needed additional parameters in the INPT2 namelist along with the items required for a

thrust curve calculation. The needed additional parameters are:

entrance velocity e UENTR= 1,2,3

A [-2] AMRAT=1,2,3

barrel length [m] BRLEN=1,2,3

time step intervals (optional) NTINC= X (default=50)
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The output generated from data in input file FILENAME.in appears in output file

FILENAME.xvt. The output that is generated is organized in columns making it possible to

quickly edit so than it can be used as the input to a plotting program. The data that appears in

the output file is distance, time, velocity, and thrust coefficient.

2.8 OTHER MODIFICATIONS. Entry OUT1A was added to subroutine OUT1 in

order to print out the precise pre-reaction mixture compositions and make it part of the

output file. This is an issue if one specifies the reactant species as F(uel) and O(xidizer) and

uses the options OF, FA, PHI, or EQRAT to define the reactant composition. In this case, what

is calculated differs from what is shown on the input card according to the molar or mass

coefficients for each species. It is intended that the calculation and print out of the

pre-equilibrium composition eliminates the need to go back and hand calculate (using the

values of PHI, OF, FA, and EQRAT that were used) to determine the reactant composition.
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3. RESULTS

Figure 3 shows a sample thrust curve that was generated using data from the

FILENAME.plt output file. The mixture composition and initial conditions correspond to the

mixture used in the first successful live firing of the HIRAM facility at ARL. The locations of

the Chapman-Jouget detonation point, Chapman-Jouget deflagration point, and maximum

thrust point are marked. The domains of the detonation branch and the deflagration branch

are also marked.

3CH4+202+10N2
P1=51atm,T1=298K

THRUST AND HEAT RELEASE AS FUNCTIONS OF VELOCITY

5.0

4.5

4.0

ý3.5 dO/OpTi

0.

3.0

(L. 2.51

2.0

deIa grtth on bmn t u deto,,aol b ruich
1.5

1p.0 Chtpmangt ought
dh-agmt g ppoi t Ciape Ifawouggt

dsbuafci, po~t
0.5

0.0L
0.0 500.0 1000.0 1500.0

Ul (M/SEC)

Figure 3: Thrust curve for the baseline HIRAM gas mixture.

It was stated previously that the 1-D control volume formulation reduces the projectile to a

planar wave that is travelling through the gun barrel and that the Chapman-Jouget

deflagration point is never observed in reality. Examination of the two end points of the

thrust curve will show that the Chapman-Jouget detonation point is stable, whereas the

Chapman-Jouget deflagration point is unstable. If a wave should be travelling at a speed

lower than the detonation velocity, a positive force will be generated that will accelerate it, but

if the wave should be travelling faster than the detonation velocity, a retarding force will be
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generated instead (negative values of --L were not calculated, but they do exist outside of the

boundaries set by the Chapman-Jouget detonation and deflagration points). The opposite

occurs at the Chapman-Jouget deflagration point, where the force induced when the wave is

travelling at a velocity different than the deflagration velocity will move it further away from

the deflagration point.

In addition to thrust vs. velocity, Figure 3 also shows the dimensionless energy release

parameter as a function of velocity. Energy release does vary somewhat with velocity. Each

calculated point corresponds to a different final pressure and temperature which results in a

variation of the final mixture composition and enthalpy of formation of the final products.

Figure 4 shows the locus of thrust curve solution points in the P-v plane using data

from the same FILENAME.plt output file that was used to generate Figure 3. The points that

were marked in Figure 3 are also marked in Figure 4.

3CH4+202+10N2

15.0 P1=51atrt,T1=298K

LOCUS OF SOLUTION POINTS IN PRv PLANE

Chapman-Jouget

12.5 detonaimpoint

10.0
-delagmtion branch - =

b-

7.5

maximum thrust point

5.0

Ohs onv-Jouget
2.5 deflagrainn point

- etonafion brach/
0.0

0.0 2.5 5.0 7.5 10.0 12.5
(v2/vl)

Figure 4: Thrust curve from Figure 3 in the thermodynamic plane.

Figure 5 shows a sample velocity vs. distance trace of a projectile that was generated

using the thrust curve shown in Figure 3. Also plotted on Figure 5 is thrust coefficient vs.
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distance. This shows graphically if the projectile is operating ineffectively and if a different

reactant mixture should be considered.

3CH4+202+10N2
P1 =5latm, T1 =298K, Nrn=0.002262

1300
VELOCITY AND THRUST AS FUNCTIONS OF DISTANCE

1275 4.0
U

1250 3.5

D 1225 3.0

1200 2.5

1175 2.0

1150 • . . i . . . . 1.5

0.0 1.0 2.0 3.0 4.0x (M)

Figure 5: Sample distance vs. time calculation using the thrust

curve from Figure 3.

Figures 6, 7, and 8 show, respectively, the same calculated results in Figures 3, 4, and

5, but for a different mixture at a different initial pressure. This particular mixture has never

been tried in the HIRAM facility but has been used by UW. The UW mixture is slightly less

fuel rich and significantly less diluted with nitrogen.

As expected, the less diluted mixture is more energetic and displays this increased

energy release throughout the speed range of the ram acceleration process. The value of

1
Aq 1 rises from 3.3 to 4.4 at the Chapman-Jouget detonation point and the difference

throughout is approximately 1. The extra energy of the less dilute mixture results in an

increase in the maximum thrust coefficient from 4.1 at 740 m/sec to 4.9 at 840 m/sec. The

detonation velocity of the mixture also increased from 1,470 m/sec to 1,700 m/sec. The change

in sound speed between the two mixtures is negligible (361 m/sec for the baseline mixture and
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363 m/sec for the less dilute mixture) so the increased detonation speed is a result of only the

greater energy release.

2.7CH4+202+5.8N2
P1 =25atm, T1 =298K

THRUST AND HEAT RELEASE AS FUNCTIONS OF VELOCITY

5.0

4.5
dQ/CpT1

4.0

3.5

3.0

L.. 2.5

2.0

1.5 F/APi

1.0

0.5

0.01
0,0 500.0 1000.0 1500.0

Ul (M/SEC)

Figure 6: Thrust curve for a different gas mixture and fill pressure.

A comparison of the calculated thrust curve shown in Figure 6 with published thrust

curves (Knowlen and Bruckner 1991; Rolader and Drabczuk 1993) is shown in Appendix 4.

Figure 7 shows the thrust curve of Figure 6 plotted in P-v coordinates.

Another indication of the greater energy release of the less dilute mixture is the higher

final pressure ratio achieved at the detonation point. Though not plotted, this is also

accompanied with a higher final temperature ratio.

Figure 8 shows a distance vs time calculation using the thrust curve shown in Figure 6

with the same projectile parameters used in Figure 5 (entrance velocity = 1,180 m/sec, barrel

length = 4.5 m, and cross-sectional area to mass ratio = 0.00226)
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2.7CH4+202+5.8N2

15.0 P1 =25atm, T1 =298K

LOCUS OF SOLUTION POINTS IN P,v PLANE
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Figure 7: Thrust curve from Figure 6 in the thermodynamic plane.

2.7CH4+202+5.8N2

1300 - P1 =25atm, T1 =298K, Nm=0.002262
VELOCITY AND THRUST AS FUNCTIONS OF DISTANCE
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Figure 8: Distance vs. time calculation using the thrust curve from

Figure 6.
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Examination of Figure 8 and comparison with Figure 5 reveals some interesting

results. Despite using only half the fill pressure, the exit velocity predicted for the UW

mixture in Figure 8 is almost identical to that predicted in Figure 5 (1,262 m/sec vs.

1,269 m/sec). The reason for this is that the projectile in Figure 8 is operating at

approximately double the thrust coefficient throughout the barrel compared to the HIRAM

Fbaseline mixture in Figure 5. The doubled thrust coefficient, F, combined with half the fill

pressure, P1 , result in the same thrust and exit velocity. Examination of the thrust curves in

Figures 3 and 6 reveals that, for an entrance velocity of 1,180 m/sec, the ram process operates

in a more effective portion of the thrust curve (closer to [p]ax ) using the UW mixture.

Caution has to be excercised if one is considering alternative mixtures to improve

performance. The projectile's geometry will impose limits on how much heat can be released

for a given Mach number. Control volume based theory cannot give this information. It has to

be arrived at either through more sophisticated analysis or experimentation.
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4. CONCLUSIONS

The modifications made to the CET89 program have resulted in the ability to calculate

1-D control volume ram accelerator thrust curves efficiently while also being able to access the

CET89 thermodynamic library. This allows the possibility of analyzing the potential

performance of a wide range of fuel mixtures. The most appropriate use of the program would

be for preliminary studies of fuel mixtures. The performance of the projectile will be a
1

function of dimensionless variables (M1, Aq 1 .... ) and the modified CET89 code could be

used to find mixtures that have the proper characteristics.

It is vital to understand that there are mixture properties important to projectile

performance that are not calculated by the modified CET89 code. These are properties that

are kinetic in nature, such as auto-ignition temperature, induction time, and reaction rate.

The 1-D control volume equation does not allow for projectile geometry, so the analysis of a

geometry and its interaction with the reactant mixture must be done with a more

sophisticated theory, something that at least allows for area changes (a quasi 1-D theory) and

finite rate chemistry.
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APPENDIX 1: Sample computer program input file.

The following is the input file that was read by the modified CET-89 code and

generated the output used to create Figures 3, 4, and 5.

REACTANTS

C 1. H 4. 00 3.0 MO.0 G298.00 F

o 2. 00 2.0 MO.0 G298.00 0

N 2. 00 10.0 MO.0 G298.00 F

NAMELISTS

&INPT2 TCURV=T, XVST=T, SIUNIT=T, ERATIO=T,

T=298,P=51,MIX=3.0,NTINC=50,UENTR=1180.,BRLEN=4.5,AMRAT=0.002262 &END

The option TCURV=T selects the thrust curve calculation and this was used to provide

the data for Figures 3 and 4 (see Appendix 2 for a listing of the data). The remaining inputs

for a thrust curve calculation are identical to those needed for a detonation point calculation,

reactant composition is specified and initial pressures and temperatures are given.

The XVST=T option selects the distance vs. time calculation. The additional

parameters that need to be specified for a distance vs. time calculation are entrance velocity

(UENTR=), barrel length (BRLEN=), tube cross-sectional area to projectile mass ratio

(AMRAT=), and calculation time step interval (NTINC=). After a thrust curve calculation is

completed (43 data points), distance vs. time calculations are made. The output of the data

used to generate Figure 5 is shown in Appendix 3.
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APPENDIX 2: Sample computer program output file for a thrust curve

calculation.

3.000 CH4 + 2.000 02 + 10.000 N2

PRE-EQUIL COMPOSITION 0.008 CH4 + 0.005 02 + 0.025 N2

O/F= 0.1950 EQUIVALENCE RATIO= 3.0000

P1= 51.00 ATM : T1= 298.0 K

U1 M1 F/API Q/CpT1 T2/T1 P2/PI RHO1/RHO2

1466.3 4.0613 0.0000 3.3048 5.0655 10.5608 0.5787

1435.0 3.9746 0.3051 3.3450 5.0153 10.2794 0.5871

1402.5 3.8844 0.6103 3.3867 4.9649 9.9905 0.5963

1368.6 3.7904 0.9154 3.4300 4.9139 9.6934 0.6065

1333.0 3.6920 1.2206 3.4749 4.8622 9.3864 0.6179

1295.6 3.5883 1.5257 3.5217 4.8096 9.0673 0.6307

1255.8 3.4781 1.8308 3.5707 4.7556 8.7335 0.6453

1213.1 3.3600 2.1360 3.6221 4.6997 8.3808 0.6623

1166.7 3.2314 2.4411 3.6766 4.6413 8.0033 0.6824

1115.2 3.0887 2.7463 3.7350 4.5791 7.5916 0.7070

1086.8 3.0100 2.8988 3.7661 4.5460 7.3680 0.7217

1056.1 2.9250 3.0514 3.7989 4.5111 7.1285 0.7386

1022.3 2.8313 3.2040 3.8339 4.4736 6.8679 0.7585

984.1 2.7256 3.3565 3.8718 4.4326 6.5770 0.7827

962.7 2.6663 3.4328 3.8924 4.4101 6.4156 0.7973

939.1 2.6009 3.5091 3.9144 4.3858 6.2388 0.8142

912.4 2.5269 3.5854 3.9385 4.3588 6.0405 0.8344

897.4 2.4854 3.6235 3.9515 4.3439 5.9299 0.8463

880.8 2.4395 3.6617 3.9657 4.3277 5.8084 0.8600

862.1 2.3876 3.6998 3.9812 4.3095 5.6715 0.8761

839.9 2.3262 3.7380 3.9990 4.2884 5.5106 0.8962

742.2 2.0555 3.8142 4.0691 4.1994 4.8142 1.0000

673.8 1.8663 3.7761 4.1092 4.1408 4.3386 1.0913

645.6 1.7881 3.7380 4.1234 4.1173 4.1446 1.1349

624.0 1.7283 3.6998 4.1334 4.0996 3.9971 1.1710

605.9 1.6781 3.6617 4.1411 4.0850 3.8741 1.2033

575.6 1.5941 3.5854 4.1527 4.0607 3.6691 1.2621

550.1 1.5235 3.5091 4.1610 4.0406 3.4981 1.3166

527.7 1.4615 3.4328 4.1672 4.0231 3.3487 1.3689

507.5 1.4056 3.3565 4.1719 4.0075 3.2147 1.4201

471.8 1.3066 3.2040 4.1780 3.9799 2.9787 1.5216

440.4 1.2197 3.0514 4.1809 3.9559 2.7731 1.6245

412.1 1.1414 2.8988 4.1814 3.9342 2.5890 1.7307

386.2 1.0697 2.7463 4.1799 3.9142 2.4210 1.8418

339.6 0.9407 2.4411 4.1722 3.8777 2.1209 2.0844

298.2 0.8258 2.1360 4.1592 3.8439 1.8559 2.3642

260.5 0.7215 1.8308 4.1413 3.8116 1.6165 2.6956

225.7 0.6252 1.5257 4.1187 3.7797 1.3968 3.0992

193.3 0.5354 1.2206 4.0911 3.7471 1.1929 3.6058

162.8 0.4509 0.9154 4.0577 3.7129 1.0019 4.2651
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133.9 0.3710 0.6103 4.0173 3.6756 0.8218 5.1639

106.5 0.2948 0.3051 3.9677 3.6334 0.6510 6.4687

80.2 0.2220 0.0000 3.9049 3.5831 0.4883 8.5466
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APPENDIX 3: Sample computer program output for a distance vs time

calculation.

3.000 CH4 + 2.000 02 + 10.000 N2
PRE-EQUIL COMPOSITION 0.008 CH4 + 0.005 02 + 0.025 N2

O/F= 0.1950 EQUIVALENCE RATIO= 3.0000
FILL PRES = 51.00 ATM, FILL TEMP =298.00 K
UG = 1180.0 M/SEC, ACCEL LEN = 4.50 M, A/M =0.00226 M^2/KG
X [M] T [SEC] U [M/SEC] F/API

0.0000 0.000000 1180.00 2.3538
0.0901 0.000076 1182.10 2.3400
0.1803 0.000153 1184.18 2.3263
0.2707 0.000229 1186.26 2.3126
0.3613 0.000305 1188.32 2.2991
0.4520 0.000381 1190.37 2.2856
0.5429 0.000458 1192.41 2.2722

0.6339 0.000534 1194.43 2.2589
0.7251 0.000610 1196.45 2.2456
0.8164 0.000686 1198.45 2.2325
0.9079 0.000763 1200.44 2.2194
0.9995 0.000839 1202.42 2.2064
1.0913 0.000915 1204.39 2.1935
1.1832 0.000992 1206.34 2.1806

1.2753 0.001068 1208.29 2.1678
1.3675 0.001144 1210.22 2.1551
1.4599 0.001220 1212.14 2.1425
1.5524 0.001297 1214.05 2.1294
1.6451 0.001373 1215.95 2.1158
1.7379 0.001449 1217.83 2.1023
1.8309 0.001525 1219.71 2.0889
1.9240 0.001602 1221.57 2.0756
2.0172 0.001678 1223.42 2.0624
2.1106 0.001754 1225.26 2.0492
2.2041 0.001831 1227.09 2.0362
2.2978 0.001907 1228.90 2.0232
2.3916 0.001983 1230.71 2.0103

2.4855 0.002059 1232.50 1.9975
2.5796 0.002136 1234.28 1.9847
2.6738 0.002212 1236.05 1.9721
2.7681 0.002288 1237.81 1.9595
2.8626 0.002364 1239.55 1.9470
2.9572 0.002441 1241.29 1.9346
3.0520 0.002517 1243.01 1.9223
3.1468 0.002593 1244.73 1.9100
3.2418 0.002669 1246.43 1.8978
3.3370 0.002746 1248.12 1.8857
3.4322 0.002822 1249.80 1.8737
3.5276 0.002898 1251.47 1.8618
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3.6231 0.002975 1253.13 1.8499
3.7188 0.003051 1254.78 1.8381
3.8145 0.003127 1256.42 1.8261
3.9104 0.003203 1258.05 1.8136

4.0064 0.003280 1259.67 1.8012

4.1026 0.003356 1261.27 1.7889

4.1988 0.003432 1262.87 1.7766

4.2952 0.003508 1264.45 1.7645

4.3917 0.003585 1266.03 1.7524
4.4883 0.003661 1267.59 1.7404

4.5851 0.003737 1269.14 1.7285
NUMBER OF POINTS IN CURVE = 50
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APPENDIX 4: Comparison of calculated thrust curve to published results.

Figure 9 shows a comparison of the thrust curve shown in Figure 6 of this report with

thrust curves published by UW (Knowlen and Bruckner 1991) and by the Air Force Armament

Directorate at Eglin AFB (Rolader and Drabczuk 1993). The UW and Eglin curves were

reproduced with the aid of a digitizing tablet which was used to generate coordinate data. The

UW and the Eglin plots, in their original forms, had thrust coefficient plotted against

dimensionless velocities, Mach number in the Eglin case and U in the UW case. The

UcJ

dimensionless velocity values read with the digitizer were then multiplied by, respectively,

sound speed (363.4 m/sec) and Chapman-Jouget detonation velocity (1,701.4 m/sec) to make a

direct comparison with the thrust curve calculated with the modified CET89 code. The

agreement between the three curves is very good.

COMPARISON OF CALCULATED THRUST CURVES

2.7CH4+202+5.8N2

P1=25atm; Ti =298K

ARL CALC
5.0 -- 6- UWCALC

...... -A ..... EG IN CALC
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- 3.0

2.0

1.0

0.0
0 250 500 750 1000 1250 1500 1750

U (M/sec)

Figure 9: Comparison of calculated thrust curves.
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